Increases in [Ca2+]i and changes in intracellular pH during chemical anoxia in mouse neocortical neurons in primary culture

Author(s):  
Nanna Koschmieder Jørgensen ◽  
Stine Falsig Petersen ◽  
Inge Damgaard ◽  
Arne Schousboe ◽  
Else Kay Hoffmann
2003 ◽  
Vol 285 (1) ◽  
pp. G45-G53 ◽  
Author(s):  
Monika Schweigel ◽  
Holger Martens

The K+-insensitive component of Mg2+ influx in primary culture of ruminal epithelial cells (REC) was examined by means of fluorescence techniques. The effects of extracellular anions, ruminal fermentation products, and transport inhibitors on the intracellular free Mg2+ concentration ([Mg2+]i), Mg2+ uptake, and intracellular pH were determined. Under control conditions (HEPES-buffered high-NaCl medium), the [Mg2+]i of REC increased from 0.56 ± 0.14 to 0.76 ± 0.06 mM, corresponding to a Mg2+ uptake rate of 15 μM/min. Exposure to butyrate did not affect Mg2+ uptake, but it was stimulated (by 84 ± 19%) in the presence of [Formula: see text]. In contrast, Mg2+ uptake was strongly diminished if REC were suspended in [Formula: see text]-buffered high-KCl medium (22.3 ± 4 μM/min) rather than in HEPES-buffered KCl medium (37.5 ± 6 μM/min). After switching from high- to low-Cl– solution, [Mg2+]i was reduced from 0.64 ± 0.09 to 0.32 ± 0.16 mM and the [Formula: see text]-stimulated Mg2+ uptake was completely inhibited. Bumetanide and furosemide blocked the rate of Mg2+ uptake by 64 and 40%, respectively. Specific blockers of vacuolar H+-ATPase reduced the [Mg2+]i (36%) and Mg2+ influx (38%) into REC. We interpret this data to mean that the K+-insensitive Mg2+ influx into REC is mediated by a cotransport of Mg2+ and Cl– and is energized by an H+-ATPase. The stimulation of Mg2+ transport by ruminal fermentation products may result from a modulation of the H+-ATPase activity.


1995 ◽  
Vol 676 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Yi-Bing Ou Yang ◽  
Tibor Kristia´n ◽  
Vale´ria Kristia´nova´ ◽  
Pekka Mellerga˚rd ◽  
Bo K. Siesjo¨

2001 ◽  
Vol 204 (22) ◽  
pp. 3943-3951
Author(s):  
Gerhard Krumschnabel ◽  
Claudia Manzl ◽  
Pablo J. Schwarzbaum

SUMMARY Mechanisms of intracellular pH (pHi) regulation were investigated in anoxia-tolerant hepatocytes from goldfish Carassius auratus, and compared to the situation in the anoxia-intolerant hepatocytes from trout Oncorhynchus mykiss. Under normoxic conditions, the pHi of goldfish hepatocytes was regulated by a Na+/H+ exchanger and a Na+-independent Cl–/HCO3– exchanger, the latter being activated only after acidification of the cells. Mechanisms of acid secretion appear to be fuelled, at least in part, by lactate formation under fully aerobic conditions, as inhibition of glycolysis caused a drastic reduction of steady state proton release. In trout hepatocytes both a Na+/H+ exchanger and a Cl–/HCO3– exchanger were found to be tonically active, as described previously. During chemical anoxia a constant pHi was maintained in goldfish hepatocytes, whereas it was reversibly reduced by 0.3 units in the trout cells. Under these conditions a reversible increase in the rate of acid secretion was induced in the cells from both species. In the goldfish cells this was based on a SITS-sensitive transporter, possibly involving export of lactate, with no contribution from Na+/H+ exchange. By contrast, in hepatocytes from trout, CN-induced acid secretion was dominated by the activity of the Na+/H+ exchanger. Brief exposure to extracellular acidosis had no dramatic effects on the energetics of hepatocytes from either species.


1986 ◽  
Vol 251 (5) ◽  
pp. C707-C712 ◽  
Author(s):  
P. J. Little ◽  
E. J. Cragoe ◽  
A. Bobik

Rat aortic segments and aortic smooth muscle cells in primary culture were used to examine the importance of the Na-H exchange system in transporting Na into smooth muscle. Ethylisopropylamiloride was approximately 100 times more potent than amiloride at inhibiting Na influx into smooth muscle. In a 135 mM Na-containing medium approximately 80% of the Na influx rate could be inhibited by 100 microM ethylisopropylamiloride. The rate of Na entry into cells was markedly influenced by extracellular and intracellular pH. Elevating extracellular pH from 6.0 to 8.0 increased the Na influx rate. The dependence of the Na influx rate on intracellular pH was demonstrated by acidification of cells with nigericin or preincubation with ammonium chloride. These two procedures increased 22Na+ influx rate by about 3.5-fold. In both instances the increases in 22Na+ influx rate could be completely attenuated by ethylisopropylamiloride. Increases in Na influx rate via the Na-H exchange also increased the activity of the Na-K pump, thereby maintaining intracellular Na content approximately constant. These results indicate that Na-H exchange is a major influx pathway for Na in rat vascular smooth muscle. Activation of this system activates the Na-K pump, which maintains intracellular Na constant.


1986 ◽  
Vol 390 (2) ◽  
pp. 199-209 ◽  
Author(s):  
M WEIBEL ◽  
B PETTMANN ◽  
J ARTAULT ◽  
M SENSENBRENNER ◽  
G LABOURDETTE

1982 ◽  
Vol 47 (02) ◽  
pp. 128-131 ◽  
Author(s):  
F Esnard ◽  
E Dupuy ◽  
A M Dosne ◽  
E Bodevin

SummaryA preliminary characterization of a fibrinolytic inhibitor released by human umbilical vein endothelial cells in primary culture is reported. This molecule of Mr comprised between 2 × 105 and 106 and of μ2 mobility precipitates at 43% ammonium sulphate saturation and is totally adsorbed on Concanavalin A Sepharose 4 B. A possible relationship with a macroglobulins is discussed.


Diabetes ◽  
1995 ◽  
Vol 44 (2) ◽  
pp. 196-202 ◽  
Author(s):  
N. Khandoudi ◽  
M. Bernard ◽  
P. Cozzone ◽  
D. Feuvray

Diabetes ◽  
1991 ◽  
Vol 40 (4) ◽  
pp. 462-464 ◽  
Author(s):  
M. Miralpeix ◽  
J. F. Decaux ◽  
A. Kahn ◽  
R. Bartrons

Sign in / Sign up

Export Citation Format

Share Document